
Information Coding / Computer Graphics, ISY, LiTH

Fractal Brownian Motion!
!

A model of signals/processes with dependecies between that makes
the value vary so that it tends to be close to the previous values, but

still with random variations.!
!

It is self-similar in the sense that the probability distribution is uniform.!
!

"As a centered Gaussian process, it is characterized by the
stationarity of its increments and a medium- or long-memory

property"!
!

For our purposes: Fractal offsets of geometry

Information Coding / Computer Graphics, ISY, LiTH

Last time: Fractals!
!

P

Fractal terrain generation!
!

Statisticaly self-similar fractal (FBM)!
!

but also!
!

Application of noise functions

Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation!
!

• Fractals: Midpoint displacement/heightfield
refinement!

!
• Signal processing: Frequency space filtered noise!

!
• Noise functions: Multiple bands of band-limited

noise functions (Perlin noise)!

Information Coding / Computer Graphics, ISY, LiTH

Random midpoint-displacement!
!

Good for fractal terrain generation

Initiator!
!

Desired rough
overall shape

Generator!
!

Find midpoint,
displace along y

only

7
iterations

Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation for 2D
heightmap!

!
Split a square to four!

!
Displace midpoints of each side and middle

But: What dependencies? Any outside the square?!
!

Edge points must match neighbor patches

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

1) Midpoint from corners!
!

2) Midpoint from resulting "diamonds"

Repeat to
desired

resolution

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm!
!

Random offset at each stage!
!

Proportional to size of the side of the square!
!

=> Scale down by sqrt(2) for each phase!!
!

(Not by 2 for every two phases! Popular
misconception!)!

!
Downscaling = 1/f rule!

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm filtering!
!

Important feature! We are reconstructing a signal from
samples! (And then add HF detail.)!

!
Simple and fast: Averaging (linear interpolation)!

!
Better: Higher precision filter from larger

neighborhood. Usual signal processing rules apply!
Use a 4x4 neighborhood.

Linear

Better, e.g. cubic spline

Information Coding / Computer Graphics, ISY, LiTH

Computational complexity of
Diamond-square!

!
Every point is visited only once!!

!
Hence, O(N2) for an N2 image!

!
Exceptionally fast in its simplest forms!

!
A constant factor gets higher for better filtering

Information Coding / Computer Graphics, ISY, LiTH

Diamond-square results!
!

Visually pleasing but has artifacts if not properly filtered!

Information Coding / Computer Graphics, ISY, LiTH

”Heightfield approach”!
!

”Square-square” algorithm!
!

Terrain level k is array of resolution 2k x 2k!
!

The next level has 4x the resolution!
!

Generate new 2x2 block from one, or (better) filter over a small
neighborhood!

!
Add random offset to all values!

!
Offset should be smaller for higher k!

!
=> magnitude of frequency components inverse proportional to

frequency!

Information Coding / Computer Graphics, ISY, LiTH

Square square!
!

Image upsampling + add noise

Again: Linear
interpolation is
simple and fast,
better filter gives

better result

Essentially: Create a resolution pyramid level by level!

Information Coding / Computer Graphics, ISY, LiTH

Computational complexity of
Square-square!

!
Image size + 1/4 + 1/16... = 1 1/3!!

!
Hence, O(N2) but with a higher constant than Diamond-

Square!
!
!

Additional benefit!
!

Produces a resolution pyramid as a side effect! Can be
saved and used for level-of-detail!

!
This is possible with other methods but automatic here.

Information Coding / Computer Graphics, ISY, LiTH

Noise functions!
!

Fractals and noise functions are closely related!
!

Noise can look natural... but when?!
!

• white noise!
• colored noise!
• value noise!

• gradient noise

Information Coding / Computer Graphics, ISY, LiTH

White noise!
!

Same amplitude in all frequencies!
!

Useless as it is?!
!

Can be processed to something better.

Information Coding / Computer Graphics, ISY, LiTH

Colored noise!
!

Amplitude varies with frequencies!
!

With the right variation, it can look nice - natural!!
!

The 1/f rule!

Information Coding / Computer Graphics, ISY, LiTH

Colored noise!
!

Can be processed with filters, e.g. frequency plane functions!
!

Considered too computationally heavy. (Questionable!)!
!

Therefore other methods became popular: Simplex noise,
Perlin noise.

Information Coding / Computer Graphics, ISY, LiTH

Value noise!
!

If you just fill your pixels with values in some range, you get
value noise (essentially white noise).!

!
Value noise is perfectly useful after proper filtering, possibly

combining several frequency bands.

Information Coding / Computer Graphics, ISY, LiTH

Colored noise by filtering in the
frequency plane!

!
Fill frequency space (2D) with random numbers

(white noise)!
!

Filter by G(f) = F(f) * 1/|f|!
!

Convert to spatial image with FFT

Information Coding / Computer Graphics, ISY, LiTH

Filter white noise by 1/f!
!

Example

Frequency space:

Information Coding / Computer Graphics, ISY, LiTH

Other falloffs than 1/|f|

Too much ramp Too little ramp

Information Coding / Computer Graphics, ISY, LiTH

Advantages of frequency plane filtered
noise!

!
Extremely good precision for the frequency

behavior!
!

Repeating patterns, good for textures!
!

FFT well researched, highly optimized
implementations = fast

Information Coding / Computer Graphics, ISY, LiTH

Octave!
!

Usually a music term.!
!

One octave = 2x frequency!

One octave is exactly at half of the string length!

Information Coding / Computer Graphics, ISY, LiTH

Gradient/Perlin noise!
!

Single octave

Information Coding / Computer Graphics, ISY, LiTH

void makeperlintexture()!
{!
! int x, y;!
! float i[3];!
! char val;!
! !
! for (x = 0; x < 128; x++)!
! for (y = 0; y < 128; y++)!
! {!
! ! i[0] = x / 8.0;!
! ! i[1] = y / 8.0;!
! ! val = (char)(clamp(noise2(i) * 200.0, -127, 127))+128;!
! !
! ! ptex[x][y][0] = val;!
! ! ptex[x][y][1] = val;!
! ! ptex[x][y][2] = val;!
! }!
}

Single octave Perlin

Information Coding / Computer Graphics, ISY, LiTH

Multi-octave Perlin!
!

Multiple "rings" in frequency space!
!

Each ring scaled after the 1/f rule!

Information Coding / Computer Graphics, ISY, LiTH

void makeperlintexture()!
{!
! int x, y;!
! float i[3];!
! char val;!
! !
! for (x = 0; x < 128; x++)!
! for (y = 0; y < 128; y++)!
! {!
// 5 octaves:!
!
! ! i[0] = x / 32.0;!
! ! i[1] = y / 32.0;!
! ! i[2] = 0.0;!
! ! !
! ! val = (char)(noise3(i) * 128.0)+128;!
!
! ! i[0] = x / 16.0;!
! ! i[1] = y / 16.0;!
! ! i[2] = 2.0;!
! ! !
! ! !

! ! val += (char)(noise3(i) * 64.0);!
! ! !
! ! i[0] = x / 8.0;!
! ! i[1] = y / 8.0;!
! ! i[2] = 3.0;!
! ! !
! ! val += (char)(noise3(i) * 32.0);!
! ! !
! ! i[0] = x / 4.0;!
! ! i[1] = y / 4.0;!
! ! i[2] = 4.0;!
! ! !
! ! val += (char)(noise3(i) * 16.0);!
!
! ! i[0] = x / 2.0;!
! ! i[1] = y / 2.0;!
! ! i[2] = 5.0;!
! ! !
! ! val += (char)(noise3(i) * 8.0);!
!
! ! ptex[x][y][0] = val;!
! ! ptex[x][y][1] = val;!
! ! ptex[x][y][2] = val;!
! }!
}Twice the frequency - half the amplitude!

Information Coding / Computer Graphics, ISY, LiTH

Result!
!

Similar to the other methods

Information Coding / Computer Graphics, ISY, LiTH

Gradient noise vs FFT!
!

The book says FFT is slow. Questionable today!!
!

Gradient noise claimed to be very fast. (Compared to what?)!
!

Frequency space processing much simpler algorithm (simple
weighting curve, based on 1/f, FFT) and great control, but

requires O(NlogN) operations.!
!

One pass Gradient noise faster... but don’t we need many?

Information Coding / Computer Graphics, ISY, LiTH

Artifacts!
!

Diamond square and Perlin noise are incomplete! They both "lock" in
certain points, only producing certain phases of the signal.!

!
I.e. produce only the cosine part of a signal and skipping the sin!!

!
This can be corrected by generating two sets of the signal, with a

proper offset!

Information Coding / Computer Graphics, ISY, LiTH

Applications of FBM!
!

Terrains!
!

Textures, texture detail!
!

Smoke!
!

Etc...

Information Coding / Computer Graphics, ISY, LiTH

Feature comparison!
!

Scalability: Diamond square and Square square very easy to
scale to more detail but hard to expand to new patches.!

!
Perlin easy to scale if you add additional octaves - which

degrades performance. Strongest point: Easy to expand to new
patches + easy to parallellize.!

!
Control: Frequency plane filtering has extreme control. The

others depend on weights on octaves.!
!

Your application needs may decide.

Information Coding / Computer Graphics, ISY, LiTH

Repeating textures!
!

Frequency plane filtering creates repeating textures
automatically!!

!
Diamond square can, trivially!

!
Perlin noise is repeating in special versions.!

!
Good feature for texture generation.

Information Coding / Computer Graphics, ISY, LiTH

Repeating texture from Diamond-Square!
!

Generate from ONE corner instead of four!!
!

The most natural way to run the algorithm!

Information Coding / Computer Graphics, ISY, LiTH

Adapt frequency behavior (change amplitude) to
other needs!

!
The change of frequency per step is called lacunarity and is the

change if frequency per step. Is is almost always 2.0. (The definition of
"octave"!)!

!
The scaling of amplitude per step is sometimes called persistence but

the course book just calles it H. At 2.0 it will match the 1/f rule.!
!

How about other frequency behaviors?!
!

Just change the amplitude variation per step!!
!

Trivial modificaton for both Perlin and Diamond-Square, just change
the scale. For frequency plane filtering, change the curve.!

!
Useful for e.g. different biomes, like deserts.

Information Coding / Computer Graphics, ISY, LiTH

Repeating texture from gradient noise!
!

Requires a modified algorithm.!
!

Popular method: Use 3D noise instead and map the texture to a
torus in 3D.!

!
This makes the noise non-uniform!!

!
Not the best case for gradient noise! Use the modified 2D noise

instead.

Information Coding / Computer Graphics, ISY, LiTH

Performance comparison!
!

Produce an NxN image!
!

Diamond square: O(N2)!
!

Square square: O(N2)!
!

Single octave Perlin: O(N2)!
!

Multi octave Perlin: O(N2logN)!
!

Frequency plane filtered: O(N2logN)!
!
!

All produce similar results except single octave Perlin.

Information Coding / Computer Graphics, ISY, LiTH

Parallelism!
!

Parallel implementations of Diamond square, Square
square and Frequency plane filtering all require

multiple passes!!
!

Perlin noise is calculated in one pass = fragment
shader friendly!!

!
This is where Perlin and similar shines! Locality!!

!
!

(More on multi-pass processing next time.)

Information Coding / Computer Graphics, ISY, LiTH

What more can we do with the terrain?!
!

• Add water, calculate rivers and lakes!
!

• Erosion effects (esp along rivers)!
!

• Roads!
!

• Vegetation and buildings!
!

• Expand into new patches!
!

• Multitexturing for different kinds of locations (slopes, height)!
!

• Different generation for different climates/biomes (mountains, deserts...?)

Information Coding / Computer Graphics, ISY, LiTH

Multi-patch terrains!
!

Terrains are never drawn one triangle at a time.!
!

But very large terrains should not be drawn as a single model!!
!

• Too much geometry out of view!
• Too much data loaded in VRAM!

!
Split to patches!!

!
• Use frustum culling!

• Re-generate or swap to CPU/disk as needed!
• LOD on the patches is a good idea

Information Coding / Computer Graphics, ISY, LiTH

Conclusions of terrain generation!
!

The backbone of procedural environment generation!!
!

Fractal or noise? Same thing!!
!

Higher frequencies - lower amplitudes. (Typical for natural images as
well as a rule in fractals.)!

!
Perlin and similar good for parallelism, but not the lowest

computational complexity!!
!

Other methods are better for repeating textures.

