g : Information Coding / Computer Graphics, ISY, LiTH
4

“
4.,,’“. -

Fractal Brownian Motion

A model of signals/processes with dependecies between that makes
the value vary so that it tends to be close to the previous values, but
still with random variations.

It is self-similar in the sense that the probability distribution is uniform.

"As a centered Gaussian process, it is characterized by the
stationarity of its increments and a medium- or long-memory

property"”

For our purposes: Fractal offsets of geometry




\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Fractal terrain generation

Statisticaly self-similar fractal (FBM)
but also

Application of noise functions




..........

“]j : Information Coding / Computer Graphics, ISY, LiTH
P

Fractal terrain generation

» Fractals: Midpoint displacement/heightfield
refinement

» Signal processing: Frequency space filtered noise

* Noise functions: Multiple bands of band-limited
noise functions (Perlin noise)




...........

:3 "d -‘j Information Coding / Computer Graphics, ISY, LiTH

Random midpoint-displacement

Good for fractal terrain generation

N N

Initiator Generator
Desired rough Find midpoint,
overall shape displace along y

only

7
iterations




"d . Information Coding / Computer Graphics, ISY, LiTH
4

Fractal terrain generation for 2D
heightmap

Split a square to four

Displace midpoints of each side and middle

But: What dependencies? Any outside the square?

Edge points must match neighbor patches




Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm

1) Midpoint from corners

2) Midpoint from resulting "diamonds”

O O
® ® Repeat to
O O desired
resolution
O O




Information Coding / Computer Graphics, ISY, LiTH

Diamond-square algorithm

Random offset at each stage
Proportional to size of the side of the square
=> Scale down by sqrt(2) for each phase!

(Not by 2 for every two phases! Popular
misconception!)

Downscaling = 1/f rule!




)
‘‘‘‘‘‘‘‘‘‘

”’g : Information Coding / Computer Graphics, ISY, LiTH
4

Diamond-square algorithm filtering

Important feature! We are reconstructing a signal from
samples! (And then add HF detalil.)

Simple and fast: Averaging (linear interpolation)
Better: Higher precision filter from larger
neighborhood. Usual signal processing rules apply!
Use a 4x4 neighborhood.

Linear

Better, e.g. cubic spline




lllllllll

Information Coding / Computer Graphics, ISY, LiTH

Computational complexity of
Diamond-square

Every point is visited only once!
Hence, O(N?) for an N? image
Exceptionally fast in its simplest forms

A constant factor gets higher for better filtering




5
\
\i

. COMNG |

%,
: % Information Coding / Computer Graphics, ISY, LiTH

Diamond-square results

Visually pleasing but has artifacts if not properly filtered!




Information Coding / Computer Graphics, ISY, LiTH

“"Heightfield approach”
"Square-square” algorithm
Terrain level k is array of resolution 2% x 2X
The next level has 4x the resolution

Generate new 2x2 block from one, or (better) filter over a small
neighborhood

Add random offset to all values
Offset should be smaller for higher k

=> maghnitude of frequency components inverse proportional to
frequency!




Information Coding / Computer Graphics, ISY, LiTH

Square square

Image upsampling + add noise

Again: Linear
iInterpolation is
simple and fast,
better filter gives
better result

Essentially: Create a resolution pyramid level by level!




)
..........

*'g ‘: Information Coding / Computer Graphics, ISY, LiTH
V‘f

Computational complexity of
Square-square

Image size + 1/4 + 1/16... =1 1/3!

Hence, O(N?) but with a higher constant than Diamond-
Square

Additional benefit

Produces a resolution pyramid as a side effect! Can be
saved and used for level-of-detail

This is possible with other methods but automatic here.




Information Coding / Computer Graphics, ISY, LiTH

Noise functions
Fractals and noise functions are closely related
Noise can look natural... but when?
* white noise
» colored noise

 value noise
» gradient noise




Information Coding / Computer Graphics, ISY, LiTH

White noise
Same amplitude in all frequencies
Useless as it is?

Can be processed to something better.




o COMNG =

Information Coding / Computer Graphics, ISY, LiTH

Colored noise

Amplitude varies with frequencies

With the right variation, it can look nice - natural!

The 1/f rule!




-----------

23 "d : Information Coding / Computer Graphics, ISY, LiTH

Colored noise

Can be processed with filters, e.g. frequency plane functions
Considered too computationally heavy. (Questionable!)

Therefore other methods became popular: Simplex noise,
Perlin noise.




)
..........

:: "g “j Information Coding / Computer Graphics, ISY, LiTH

Value noise

If you just fill your pixels with values in some range, you get
value noise (essentially white noise).

Value noise is perfectly useful after proper filtering, possibly
combining several frequency bands.




)
..........

ﬁ" "g : Information Coding / Computer Graphics, ISY, LiTH
o P

Colored noise by filtering in the
frequency plane

Fill frequency space (2D) with random numbers
(white noise)

Filter by G(f) = F(f) * 1/If

Convert to spatial image with FFT




« COMNG |
&

'
: ‘i Information Coding / Computer Graphics, ISY, LiTH
o,

Filter white noise by 1/f

Example

Frequency space:




.(_omh.
&

D\
I % Information Coding / Computer Graphics, ISY, LiTH

o

Other falloffs than 1/

Too much ramp Too little ramp




*'g : Information Coding / Computer Graphics, ISY, LiTH
4

/'|
4,
L T

Advantages of frequency plane filtered
noise

Extremely good precision for the frequency
behavior

Repeating patterns, good for textures

FFT well researched, highly optimized
implementations = fast




Information Coding / Computer Graphics, ISY, LiTH

Octave
Usually a music term.

One octave = 2x frequency!

One octave is exactly at half of the string length!

e




e Y
: ’% Information Coding / Computer Graphics, ISY, LiTH

Yo,

Gradient/Perlin noise

Single octave

8 O O

- GL3 Perlin noise example




Information Coding / Computer Graphics, ISY, LiTH

Single octave Perlin

void makeperlintexture()

{

int x, y;
float i[3];
char val;

for (x = 0; x < 128; x++)
for (y = 0; yv < 128; y++)
{
i[0] = x / 8.0;
i[l] =y / 8.0;
val = (char)(clamp(noise2(i) * 200.0, -127, 127))+128;
ptex[x][y]l[0] = val;
ptex[x][y]l[1l] = val;
ptex[x][y][2] = val;




Information Coding / Computer Graphics, ISY, LiTH

« COMNG
A
(-

& &
v -
. -

.
> .
“
N »

Multi-octave Perlin
Multiple "rings" in frequency space

Each ring scaled after the 1/f rule!




« COMNG .,
%

u".‘ ¥
5 t.‘
. -
“
N wj
e

Information Coding / Computer Graphics, ISY, LiTH

void makeperlintexture()

{

int x, y;
float i[3];
char val;

for (x = 0;
for (y = 0;
{

// 5 octaves:
i[0] = x
ifl] =y
i[21] = o.

x < 128; x++)
y < 128; y++)

32.0;
32.0;

O N

°
14

val = (char)(noise3(i) * 128.0)+128;

i[0]
i[1]
i[2]

nn
NN

16.0;
16.0;

O N

°
14

Twice the frequency - half the amplitude!

val += (char) (noise3 (1)

i[0]
i[1]
i[2]

8.
8.

nn
Wk K
O N

°
4

val += (char) (noise3 (1)

i[0]
i[1]
i[2]

4.
4.

nn
LS
O NN

°
4

val += (char) (noise3 (1)

1[0]
i[1]
i[2]

2
2.

nn
(L SR
O NN

°
4

val += (char) (noise3 (1)

ptex[x][y][0]
ptex[x][y][1]
ptex[x][y][2]

0;
0;

0;
0;

0;
0;

val;
val;
val;

*

*

*

64.0);

32.0);

16.0);

8.0);




N
: :@ Information Coding / Computer Graphics, ISY, LiTH
on,

Result

Similar to the other methods




:\' ”'d : Information Coding / Computer Graphics, ISY, LiTH
4

/'|
4,
g o

Gradient noise vs FFT

The book says FFT is slow. Questionable today!
Gradient noise claimed to be very fast. (Compared to what?)
Frequency space processing much simpler algorithm (simple

weighting curve, based on 1/f, FFT) and great control, but
requires O(NlogN) operations.

One pass Gradient noise faster... but don’t we need many?




llllllllll

f\* ‘g ‘: Information Coding / Computer Graphics, ISY, LiTH
o

Artifacts

Diamond square and Perlin noise are incomplete! They both "lock" in
certain points, only producing certain phases of the signal.

|.e. produce only the cosine part of a signal and skipping the sin!

This can be corrected by generating two sets of the signal, with a
proper offset!

Eaavave RN




Information Coding / Computer Graphics, ISY, LiTH

Applications of FBM

Terrains
Textures, texture detall
Smoke

Etc...




)
..........

*]j ‘j Information Coding / Computer Graphics, ISY, LiTH
e

Feature comparison

Scalability: Diamond square and Square square very easy to
scale to more detalil but hard to expand to new patches.

Perlin easy to scale if you add additional octaves - which
degrades performance. Strongest point: Easy to expand to new
patches + easy to parallellize.

Control: Frequency plane filtering has extreme control. The
others depend on weights on octaves.

Your application needs may decide.




\\\\\\\\\\

I\ ‘jy ‘: Information Coding / Computer Graphics, ISY, LiTH

Repeating textures

Frequency plane filtering creates repeating textures
automatically!

Diamond square can, trivially
Perlin noise is repeating in special versions.

Good feature for texture generation.




)
..........

I: "d . Information Coding / Computer Graphics, ISY, LiTH

Repeating texture from Diamond-Square

Generate from ONE corner instead of four!

The most natural way to run the algorithm!

7




g : Information Coding / Computer Graphics, ISY, LiTH
4

“
Yy,

Adapt frequency behavior (change amplitude) to
other needs

The change of frequency per step is called lacunarity and is the
change if frequency per step. Is is almost always 2.0. (The definition of
"octave"!)

The scaling of amplitude per step is sometimes called persistence but
the course book just calles it H. At 2.0 it will match the 1/f rule.

How about other frequency behaviors?
Just change the amplitude variation per step!

Trivial modificaton for both Perlin and Diamond-Square, just change
the scale. For frequency plane filtering, change the curve.

Useful for e.g. different biomes, like deserts.




I\' ”’d : Information Coding / Computer Graphics, ISY, LiTH
Py

Repeating texture from gradient noise

Requires a modified algorithm.

Popular method: Use 3D noise instead and map the texture to a
torus in 3D.

This makes the noise non-uniform!

Not the best case for gradient noise! Use the modified 2D noise
instead.




\\\\\\\\\

Information Coding / Computer Graphics, ISY, LiTH

Performance comparison

Produce an NxN image
Diamond square: O(N2)
Square square: O(N?2)

Single octave Perlin: O(N2)
Multi octave Perlin: O(N2logN)
Frequency plane filtered: O(N2logN)

All produce similar results except single octave Perlin.




:\' “]j : Information Coding / Computer Graphics, ISY, LiTH
24

Parallelism
Parallel implementations of Diamond square, Square
square and Freguency plane filtering all require
multiple passes!

Perlin noise is calculated in one pass = fragment
shader friendly!

This is where Perlin and similar shines! Locality!

(More on multi-pass processing next time.)




‘]j ‘: Information Coding / Computer Graphics, ISY, LiTH
e

What more can we do with the terrain?

- Add water, calculate rivers and lakes
- Erosion effects (esp along rivers)
- Roads
* Vegetation and buildings
* Expand into new patches
- Multitexturing for different kinds of locations (slopes, height)

- Different generation for different climates/biomes (mountains, deserts...?)




:\' "d . Information Coding / Computer Graphics, ISY, LiTH
4

Multi-patch terrains

Terrains are never drawn one triangle at a time.
But very large terrains should not be drawn as a single model!

» Too much geometry out of view
* Too much data loaded in VRAM

Split to patches!
» Use frustum culling

- Re-generate or swap to CPU/disk as needed
- LOD on the patches is a good idea




"g : Information Coding / Computer Graphics, ISY, LiTH
e

Conclusions of terrain generation

The backbone of procedural environment generation!
Fractal or noise? Same thing!

Higher frequencies - lower amplitudes. (Typical for natural images as
well as a rule in fractals.)

Perlin and similar good for parallelism, but not the lowest
computational complexity!

Other methods are better for repeating textures.




